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We consider the one-dimensional supercritical contact process. Let T o be the 
first time the process reaches a density q larger than the equilibrium one p in 
the region [1...N]. We prove that, starting from equilibrium, TN/E(TN) 
converges to an exponential random time of mean one. In this way we extend 
previous results of Lebowitz and Schonmann. 
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1. I N T R O D U C T I O N  

Here we study the asymptotic distribution of the time of first occurrence of 
an anomalous density of particles in a large, fixed region of the space for 
the supercritical one-dimensional contact process. The contact process is a 
Markovian system with infinitely many particles in 7/, the set of all integers. 
The system evolves in the following way: each site of 7/ may be either 
empty or occupied by at most one particle. Each particle, independently of 
the others, waits for an exponential random time with mean 1/(2), + 1), 
where 2 > 0, and then decides to die with probability 1/(22 + 1) or to put 
a new particle at the first site on the right (respectively on the left) with 
probability 2/(22 + 1) [respectively 2/(22 + 1)]. If the particle decides to 
put a new one on a site which was already occupied, nothing happens. 
After each such choice the procedure starts again, independently of the 
past. 

As was first shown by Harris, ~176 there is a critical value zc, with 
0 < 2c < 0% such that if 2 < 2c, then the only invariant probability measure 
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for the process is the Dirac &-measure concentrated in the empty configura- 
tion. On the other hand, in the supercritical case when 2 > 2 c ,  there is 
another extremal invariant probability measure v whose support is 
contained in the set of the configurations having infinitely many particles 
with a given density p, which, of course, depends on 2. 

Here we are interested in the time needed by the process to have an 
anomalous density of particles q, with q >  p in the set {1, 2,..., N}. We 
show that, starting with the invariant probability measure v, then, when 
suitably rescaled, this time converges in law for N ~  oo to a random 
exponential time with mean one. Moreover, we show that the scaling factor 
is logarithmically equivalent to exp[N~b(q)], where ~b: [0, 13 ~ [0, oo] is 
the function introduced in refs. 6 and 7 and studied in more detail in ref. 3. 
Actually, our proof works also for the case in which the aomalous density 
is smaller than p, but this was already done in ref. 7 for a large class of 
attractive, infinitely-many-particle systems, including the contact process. 

The point is that in ref. 7 the proofs are all based on the following 
monotonicity property due to attractiveness: if the process starts with the 
configuration in which all sites are occupied, then during the time evolu- 
tion its distribution decreases toward the invariant probability measure. 
This monotonicity can be used to study the time it takes for the process to 
reach a density smaller than p, but just does not work if the fluctuations 
are in the "wrong" upper direction. 

Here we use a different approach based on the quick loss of memory 
of the process. This follows from our basic lemma, which says that starting 
with two different configurations with enough particles and letting them 
evolve with the same choise of deaths and creations, then very quickly they 
become identical forever in any fixed region of the space. By "quickly" here 
we mean "much smaller than the time needed to perform the large density 
fluctuation." This approach was implicit in the papers which studied the 
so-called pathwise approach to metastability (see e.g. [ C G O V ] )  and it was 
put in evidence and intensively used in Refs. 2, 8, and 9. 

We would like to stress that this work was much inspirated by Ref. 7, 
where the reader can find a very interesting discussion about occurrence 
times of rare events for infinite particles systems. 

In Section 2 we introduce the contact process, give the basic defini- 
tions, and state the theorem. In Section 3 we state and prove our basic 
lemma and give the proof of the theorem. 

2. N O T A T I O N S  A N D  RESULTS 

The contact process can be constructed in the following way: for x ~ Z, 
let f//(x,x+l) n>~l), fr7 (x'~-~) , _ ,  , , v ,  ,n~>l) ,  and (U+'X,n~>l)  be mutually 
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independent  Poisson point  processes in ~ + with intensity ,~, 2, and 1, 
respectively. We also suppose  tha t  the Poisson processes cor responding  to 
different values of x are mutua l ly  independent  and  we denote  by (f2, P)  the 
probabi l i ty  space where all such Poisson processes are defined. 

Defini t ion.  Given  t > 0, x and y in 7/, and co in f2, we say that  there 
is an co-path f rom (x, 0) to (y, t) if there is a finite sequence of points  
Xo, X~ ..... xk  with X o = X , x ~ = y ,  and [ x ~ - x ; + l [  = 1 ,  for i = 0 ,  1, k -  1, and 
there are integers n i , / ,  ng such that  

U(~k~, ~k)(co) < t O <  ri(*o,~)(co)  < . . .  < - ~  
~ n  I 

(2.1) 

and  for no j and m 

0<~ 

nj-I 

nk 

U +'X(co) ~ U ( X ' X l )  .~ (co) 

U ~,~,(co) ...< U.j(xJ, ~j+,) (co) 

U +.y(co) <... t . 

Given  a configurat ion r / e{0 ,  1 } z , t > 0 ,  and coes we define the 
configurat ions ~7(co)a{0 ,1}  ~ in the following way: for any 7 e Z ,  
~7(co, Y) = 1 <:~ there is an x e 2~ such that  q(x)  = 1 and there is an co-path 
f rom (x, 0) to (y, t). 

The  M a r k o v  process (~7),~>o is wha t  we call the contact  process 
start ing with configurat ion q at t ime 0. We shall write ~7 for the evolut ion 
at t ime t of the process start ing with just  one particle at the site a s 77, that  
is, ~ ; (y )  = 1 only for y = a. In  the case 2 > 2c this process has two extremal  
invar iant  probabi l i ty  measures:  the Dirac  measure  concent ra ted  in the 
empty  configurat ion and v, which is a nontr ivial  measure  which can be 
defined in the following way: for any finite set F c  7/ 

v(r/; r/(x) = 0 for x e F) = p ( r x  < oo, x e F) (2.2) 

where rx = inf(t > 0; ~7(Y) = 0, Vy e Z). 
The  suppor t  of v is conta ined in the set of all the configurat ions having 

density p where p = p ( ~ x =  oo). 
Fo r  more  details abou t  the const ruct ion of the contac t  process and its 

main  propert ies  we refer the reader  to Chap te r  6 of ref. 5. 
Let  

{ N } 
B ( N , a , b ) =  q ~ { 0 1 } ~ :  a N ~  ~ q (x )<~bN (2.3) 

x = l  
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where 0 < a < b < 1. In refs. 3 and 6 it was shown that there exists a convex 
function ~b: [0, 1]--+ [0, + o o ]  such that ~b(p) = 0  if an only i f p = p  and 

ulimo ~ 1 inf ~b(p) (2.4) ~log[v (B(N,  a, b))] +-+ --a<~p<~b 

For any q > p and N positive integer let 

A ( N , q ) =  r /~{0,1}~;  ~ q ( x ) > q N  (2.5) 
x = l  

We also define T~(q) as the first time the process ~7 reaches the set 
A(N, q), i.e., 

T%(q) = inf{t > 0; 47 e A (N, q)} (2.6) 

For  notational convenience we will write TTv= T~u(q) whenever no 
confusion is possible. 

If the initial configuration is choosen at random with the invariant dis- 
tribution v, then we will simply write TVN(q) or T~v whenever no confusion 
is possible. Finally, let fiN be implicitly defined by 

P( T~v > fiN) = e -~ (2.7) 

Theorem.  For any q > p :  

1. T~(q) converges in law as N--+ oo to a mean one exponential 
random time. 

2. l imu~ ~(1/N) log(fiN ) = (~(q). 
3. limu_~ o~[E(T~)/fiu ] = 1. 

3. P R O O F  OF T H E  T H E O R E M  

The proof of the theorem uses two main ingredients. The first one is 
the quick loss of memory of the process, which is the content of the Basic 
Lemma. The second one is an a priori lower bound of the time of 
occurrence of a rare event. This is done in Proposition 1. 

Basic L e m m a .  For any p: 1 < p < 0 there exists positive constants 
c and k such that for every ~/, r e A(N, p) 

P(~t~(x)=~tr x = l  ..... N; V t > k N ) ~  l - e  -oN VN~>I (3.1) 

Proof. It is enough to prove the result for qeA(N,  p) and r such 
that r  1, Vx. 
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Since ~,N=I tl(x)>>.pN, we have, using Theorem (3.29), Chap te r6 ,  
ref. 5, 

P(~x  ~ [1, N ]  ca Z; r/(x) = 1 and ~x = + oo)/> 1 - e x p ( -  cpN) (3.2) 

Let now x be the leftmost of those particles in ~/ such that  r x =  +oe  and 
call, for any t > 0, 

l~ = min{y ;  ~ ( y )  = 1 }; r7 = max{ y; ~ ( y )  = 1 } 

It is very easy to show (see, e.g., Theorem 2.2, Chap te r6 ,  ref. 5) that  
~/(x) = 1 and r x =  +oo imply 

~7(Y) = ~'(Y) 

for any l~' ~< y ~< r~' and any t. 
'Therefore the lemma is proved if we can show that  

P([1, N ] c ~ Z c [ l [ , r ~ ]  V t > k N ) > ~ l - e x p ( - c N )  (3.3) 

This follows immediately if k is taken large enough from Corol lary 3.2, 
Chapter  6, ref. 5. 

P r o p o s i t i o n  1. Let  D N be any cylindrical event depending only 
upon the coordinates x = 1,..., N such that  

c 

V(DN) <~ N2(1 + ~--------~ 

for some constants c >/1, 6 > 0. Let aN = inf{t; ~ e DN}. Then 

lira P ( a N <  N I + ~ ) =  0 
N ~ o o  

ProoL We have 

P ( a u < t ~ < P  \ N I + ~ e D  N f o r s o m e  k =  1 . . .  [ t N  1+~] + 1 

+ P ( a u < t ; ~ ; / u ~ + ~ D u f o r a n y k = l ' " [ t N l + ~ ] + l )  (3.4) 

The first term is smaller than 

c 2ct 
(tN 1 +a + 1) v(DN) <-N (tN ~+a + 1) N2(1 +a ) ~<Nl+a (3.5) 
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while the second one is estimated from above by the probability that one 
among the 3N independent Poisson point processes associated with the 
sites x =  1,..., N fires between k /N  ~+~ and ( k +  1)/N ~+6, where k is such 
that 

k k + l ]  
~U E Nl+6, -~+-6 j  

Since aN is a stopping time of the global Poisson point process 
obtained by putting together all the poisson processes attached to each site 
x ~ Y, the probability of the above event can be bounded by 

( N ( 2 2 + 1 ) )  
1 - e x p  Nl+6 

which for large N is bounded by c'/N ~ for some c' > 0. 
In conclusion, 

2ct c' 
P(o- N < t) ~< ~ + N---g (3.6) 

which goes to zero if t ~< N 1+ 6/2 
We now turn to the proof of the first part of the theorem. It is enough 

(see, e.g., ref. 1) to show that 

lira [P (T  ~v > flN(t + S)) -- P(T~v > tiNt) P(T~v > fluS)] = 0 
N ~ c ~  

and 

We remark that: 

lira IP(T~> flN(I + s ) ) - - P ( ~ r  q), 
N ~ c ~  

U G  [ 0 ,  tiN t ] L) [ t iut  + N 1+~, tiN(t d- s)])l = 0  

lim [P(T~N>tiNS)- -P(~r  q), uE IN 1+~, fiNS])[----0 
N ~ o ~  

In fact,by the strong Markov property and the invariance of v, these 
differences are both upper-bounded by P(T~v < N 1 +~), which goes to zero 
by Proposition 1. Therefore, it is enough to prove that 

lim I P ( ~ r  A(N, q), u~ [-0, fiN t] k_) [tiut + N a+~, flN(t + S) ]) 
N ~ c ~  

--P(T~N>flN t) P((~ ~ A(N, q), u~ [-N 1+6, fluS])l = 0  
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Using the Markov property, we write 

P(~,  ~ A(N, q), u~ [-0, tin t ] t.3 [tiNt + N 1+6, tiN(t nt- S) 

= f P(T~u> flU t, ~}x Edtt). P ( ~  q~ A(N, q), u6 [-N 1+~ fluS]) 

We remark that P ( T ~ >  tiN t, ~}u, q~ B(N, a, b))<~ v(B(N, a, b)), which 
goes to zero as N--+ oe if 0 < a < p < b. 

Therefore, it is enough to show that 

sup ]P(~,(~A(N,q),u6[Nl+6, fluS]) 
~,11 ~ B(N,a ,b )  

- p (~ q ~ A( N ,q ) , u e [N l +~ , t i u S ] [~O as N--+ oo 

This supremum is upper-bounded by 

sup P ( ~ ( x )  # ~](x) for some x e { 1, 2,..., N} and) 
~,r t~B(N,a ,b)  

some u > N 1 +~ (3.7) 

which goes to zero as N ~  oo by the Basic Lemma. 
This concludes the proof of the first part of the theorem. 
We now prove the second part of the theorem. We will follow the 

pattern of Theorem 2 of ref. 7. 
Let 7 > ~b(q). We will show that 

P(T~N>eYN)~o as N--* oo (3.8) 

This implies that flu < CTu. On the other hand, using (3.6), we have 

s 
p(TV<to)<~(toN~+X+l)v(A(N,q))+~sV6>O (3.9) 

Therefore, since l i ras_ ~{log[v(A(N, q)]/N= -~b(q)< 0, by Theorem 1 of 
ref. 3 we have that if to < e [ ~ 6 ( q ) - 6 ] N  for some fixed 6 > 0, then 

P(T~ < to)--. 0 as N--. oo 

Thus flu > e [o(q) ~;]U for any large enough. 
We now turn to the proof of (3.8). We have 

P(T~u>e'/U)<~P(T~u>e~U; a~6>eYU)+ P(a~6<e~X ) (3.10) 

where 

~ ; = i n f  t: ~ ~ ( x ) < N 3 / 2 6  
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with 6 < p. Using Proposition 1, we get that 

since 

P(o,] = e vN) --~ 0 as N ~ 

[N3/2] 1 
V ~: 2 ~[(X) <N3/2(~ <<-exp[--r 

x=0 
for N large enough. To estimate the first term, we write 

P(T~v > exp(TN); a~ > exp(TN ) 

<<. P @~U2 r A(N, q); ~U 2 r A(N 3/2, 5), Vk = 1-..  [exp(TN!]'~ 
L N 2 J J  

<~ {P(~N2r q))+exp(-cU3/Z)}[{exp(TN)}/N:] (3.11) 

where we have used the basic lemma and the fact that N2>> N 3/2 for large 
N. Since 

P(~N 2 r A(N, q))= 1 -v(A(N, q)) <~ 1 --e -[r 

Y3' > 0 and N large enough, we get (3.8). 
This concludes the proof of the second part. To prove the third state- 

ment, first we write 

E(T~v) f o  fin - -  dtP(T~>flNt)  

In order to perform the limit N ~ ~ inside the integral, we will show that 
there exists h(t) >~ 0 with ~ dt h(t) < ~ and 

V(T~v > ~N t) < h( t) 

for any N large enough. Let 

{ kN+ ex~] } 

5 
and let 

S[--inf{s:  ~ C ~  ,~} 

Using (3.9) and again Theorem 1 of ref. 3, we see that P(S[ < tint) is 
bounded by 

c'~ 
(flNtN ~ +~ + 1) v(Ckt "~) + 

kN + 2 x/~ 
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and this last expression, if k and 3 are large enough, can be bounded by 
an L 1 function hi(t) independent of N. Therefore 

P( T~m > t iu t )  <~ P( T~N > timt; S t > f lu t )  + P( S~ < tiNt) 

f P(Ty  > tiN(t-- C X/7); > tint; dr) 

• P(TTv > tiNC ,~/t) + hi(t) (3.12) 

Again using Proposition 1, we have that 

scu~.~ Ie(T"u > [3NC ~t t ) - -  e(T~v > tiNC x~tt )l ~ 0 as N ~ 

if c large enough. Thus, if c ~}- >> 1, 

S u ~ P ( T ~ >  fiN c X~t) < e - 1  
~r t' 

which implies, together with (3.12), that 

P(T~v > tiNt; S[ > tiNt) < exp( -- c x / t )  

if c ,,/~ >> 1. 
In conclusion, 

P(T; ,  > tiNt) ~ exp( - tl/2/C) + h~(t) = h(t) 
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